
ECE 604, Lecture 9

September 25, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Energy and Power

• Emergence of Wave Phenomenon, Triumph of Maxwell’s Equations

Additional Reading:

• Sections 3.11, 3.12, 3.13, Ramo et al.

Printed on October 5, 2018 at 10 : 32: W.C. Chew and D. Jiao.
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2 Energy and Power

Consider the first two of Maxwell’s equations where fictitious magnetic current
is included and that the medium is isotropic. We need to consider only the first
two equations since in electrodynamics, invoking charge conservation, the third
and the fourth equations are derivable from the first two. They are

∇×E = −∂B
∂t
−Mi = −µ∂H

∂t
−M (2.1)

∇×H =
∂D

∂t
+ J = ε

∂E

∂t
+ Ji + σE (2.2)

where Mi and Ji are impressed current sources, while J = σE is the induced
current source. Here, J = σE is similar to ohm’s law. We can show from (2.1)
and (2.2) that

H · ∇ ×E = −µH · ∂H
∂t
−H ·Mi (2.3)

E · ∇ ×H = εE · ∂E
∂t
−E · Ji + σE ·E (2.4)

Using the identity, which is the same as the product rule for derivatives, we
have

∇ · (E×H) = H · (∇×E)−E · (∇×H) (2.5)

Therefore, from (2.3), (2.4), and (2.5) we have

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t
+ σE ·E + H ·Mi + E · Ji

)
(2.6)

The physical meaning of the above is more lucid if we first consider σ = 0,
and Mi = Ji = 0, or the absence of conductive loss and the impressed current
sources. Then the above becomes

∇ · (E×H) = −
(
µH · ∂H

∂t
+ εE · ∂E

∂t

)
(2.7)

Rewriting each term on the right-hand side of the above, we have

µH · ∂H
∂t

=
1

2
µ
∂

∂t
H ·H =

∂

∂t

(
1

2
µ|H|2

)
=

∂

∂t
Wm (2.8)

εE · ∂E
∂t

=
1

2
ε
∂

∂t
E ·E =

∂

∂t

(
1

2
ε|E|2

)
=

∂

∂t
We (2.9)

Then (2.7) becomes

∇ · (E×H) = − ∂

∂t
(Wm +We) (2.10)
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where Wm = 1
2µ|H|

2 and We = 1
2ε|E|

2. Equation (2.10) is reminiscent of the
current continuity equation, namely,

∇ · J = −∂%
∂t

(2.11)

In the above, current density is due to charge density flow.
Hence, E ×H has the meaning of power density, and Wm and We are the

energy density stored in the magnetic field and electric field, respectively. In
fact, one can show that E×H has the unit of V m−1 times A m−1 which is W
m−2, where V is volt, A is ampere, and W is watt which is joule s−1. Hence, it
has the unit of power density.

Similarly, Wm = 1
2µ|H|

2 has the unit of H m−1 times A2 m−2 = J m−3,
where H is henry, A is ampere, and J is joule. Therefore, it has the unit of
energy density. We can also ascertain the unit of 1

2µ|H|
2 easily by noticing that

the energy stored in an inductor is 1
2LI

2 which is in terms of joules, and is due
to henry times A2.

Also We = 1
2ε|E|

2 has the unit of F m−1 times V2 m−2 = J m−3 where
F is farad, V is voltage, and J is joule, which is energy density again. We
can ascertain the unit of 1

2ε|E|
2 easily by noticing that the energy stored in a

capacitor is 1
2CV

2 which has the unit of joules, and is due to farad times V2.
The vector quantity

Sp = E×H (2.12)

is called the Poynting’s vector, and (2.10) becomes

∇ · Sp = − ∂

∂t
Wt (2.13)

where Wt = We + Wm is the total energy density stored. The above is similar
to the current continuity equation mentioned above. Analogous to that current
density is charge density flow, power density is energy density flow.

Now, if we let σ 6= 0, then the term to be included is then σE · E = σ|E|2
which has the unit of S m−1 times V2 m−2, or W m−3 where S is siemens. We

gather this unit by noticing that 1
2
V 2

R is the power dissipated in a resistor of R
ohms with a unit of watts. The reciprocal unit of ohms, which used to be mhos
is now siemens. With σ 6= 0, (2.13) becomes

∇ · Sp = − ∂

∂t
Wt − σ|E|2 = − ∂

∂t
We − Pd (2.14)

Here, ∇·Sp has physical meaning of power density oozing out from a point, and
Pd = σ|E|2 has the physical meaning of power density dissipated (siphoned) at
a point by the conductive loss in the medium which is proportional to σ|E|2.

Now if we set Ji and Mi to be nonzero, (2.14) is augmented by the last two
terms in (2.6), or

∇ · Sp = − ∂

∂t
Wt − Pd −H ·Mi −E · Ji (2.15)
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The last two terms can be interpreted as the power density supplied by the
impressed currents Mi and Ji. Hence, (2.15) becomes

∇ · Sp = − ∂

∂t
Wt − Pd + Ps (2.16)

where

Ps = −H ·Mi −E · Ji (2.17)

where Ps is the power supplied by the impressed current sources. The last term
is positive if E and Ji have opposite signs. This reminds us of a battery where
the positive charges move from a region of lower potential to a region of higher
potential. The positive charges move from one end of a battery to the other
end of the battery. Hence, they are doing an “uphill climb” due to chemical
processes within the battery.

Figure 1:

In the above, one can easily work out that Ps has the unit of W m−3 which
is power supplied density. One can also choose to rewrite (2.16) in integral form
by integrating it over a volume V and invoking the divergence theorem yielding

ˆ
S

dS · Sp = − d

dt

ˆ
V

WtdV −
ˆ
V

PddV +

ˆ
V

PsdV (2.18)

The left-hand side is ˆ
S

dS · (E×H) (2.19)

which represents the power flowing out of the surface S.

3 Emergence of Wave Phenomenon, Triumph
of Maxwell’s Equations

One of the major triumphs of Maxwell’s equations is the prediction of the wave
phenomenon. This was experimentally verified by Heinrich Hertz in 1888, some
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23 years after the completion of Maxwell’s theory. Then it was realized that
electromagnetic wave propagates at a tremendous velocity which is the velocity
of light. This was also the defining moment which revealed that the field of elec-
tricity and magnetism and the field of optics were both described by Maxwell’s
equations or electromagnetic theory.

To see this, we consider the first two Maxwell’s equations in vacuum or a
source-free medium.1 They are

∇×E = −µ0
∂H

∂t
(3.1)

∇×H = −ε0
∂E

∂t
(3.2)

Taking the curl of (3.1), we have

∇×∇×E = −µ0
∂

∂t
∇×H (3.3)

It is understood that in the above, the double curl operator implies ∇×(∇×E).
Substituting (3.2) into (3.3), we have

∇×∇×E = −µ0ε0
∂2

∂t2
E (3.4)

Furthermore, using the identity that

∇×∇×E = ∇∇ ·E−∇2E (3.5)

and that ∇ ·E = 0 in a source-free medium, we have

∇2E− µ0ε0
∂2

∂t2
E = 0 (3.6)

To see the simplest form of wave emerging in the above, we can let E =
x̂Ex(z, t) so that ∇ · E = 0 satisfying the source-free condition. Then (3.6)
becomes

∂2

∂z2
Ex(z, t)− µ0ε0

∂2

∂t2
Ex(z, t) = 0 (3.7)

Eq. (3.7) is known mathematically as the wave equation. It can also be written
as

∂2

∂z2
f(z, t)− 1

c20

∂2

∂t2
f(z, t) = 0 (3.8)

where c20 = (µ0ε0)−1. Eq. (3.8) can also be factorized as(
∂

∂z
− 1

c0

∂

∂t

)(
∂

∂z
+

1

c0

∂

∂t

)
f(z, t) = 0 (3.9)

1Since the third and the fourth Maxwell’s equations are derivable from the first two.
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or (
∂

∂z
+

1

c0

∂

∂t

)(
∂

∂z
− 1

c0

∂

∂t

)
f(z, t) = 0 (3.10)

The above implies that we have(
∂

∂z
+

1

c0

∂

∂t

)
f+(z, t) = 0 (3.11)

or (
∂

∂z
− 1

c0

∂

∂t

)
f−(z, t) = 0 (3.12)

Equation (3.11) and (3.11) are known as the one-way wave equations or ad-
vective equations. From the above factorization, it is seen that the solutions of
these one-way wave equations are also the solutions of the original wave equation
given by (3.8). Their general solutions are then

f+(z, t) = F+(z − c0t) (3.13)

f−(z, t) = F−(z + c0t) (3.14)

Eq. (3.13) constitutes a right-traveling wave function of any shape while (3.14)
constitutes a left-traveling wave function of any shape. Since Eqs. (3.13) and
(3.14) are also solutions to (3.8), we can write the general solution to the wave
equation as

f(z, t) = F+(z − c0t) + F−(z + c0t) (3.15)

This is a wonderful result since F+ and F− are arbitrary functions of any shape
(see Figure 2); they can be used to encode information for communication!

Figure 2:
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Furthermore, one can calculate the velocity of this wave to be

c0 = 299, 792, 458m/s ' 3× 108m/s (3.16)

where c0 =
√

1/µ0ε0. Since there is only one independent constant in the wave
equation, the value of µ0 is defined to be 4π× 10−7 henry m−1, while the value
of ε0 has been measured to be about 8.854× 10−12 farad m−1. Now it has been
decided that the velocity of light is defined to be the integer given in (3.16). A
meter is defined to be the distance traveled by light in 1/(299792458) seconds.
Hence, the more accurate that unit of time or second can be calibrated, the
more accurate can we calibrate the unit of length or meter.
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